USN

Third Semester B.E. Degree Examination, June/July 2013 **Logic Design**

Time: 3 hrs. Max. Marks: 100

> Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- Write the truth table of the logic circuit having 3 inputs A, B and C and the output expressed as $Y = \overline{ABC} + \overline{ABC}$. Also simplify the expression using Boolean algebra and implement the logic circuit using NAND gates. (06 Marks)
 - Name universal gates. Realize basic gates using NAND gates.

(08 Marks) (06 Marks)

Explain positive and negative logic.

2 Give sum-of-product and product of sum circuit for,

 $f(A,B,C,D) = \sum m(6, 8, 9, 10, 11, 12, 13, 14, 15)$

(08 Marks)

Find essential prime implicants for the Boolean expression by using Quine-McClunky

 $f(W, X, Y, Z) = \sum m(1, 3, 6, 7, 8, 9, 10, 12, 13, 14)$

(12 Marks)

Design a 16 to 1 multiplexer using two 8 to 1 multiplexer and one 2 - to - 1 multiplexer. 3

Explain n-bit magnitude comparator. b.

(06 Marks) (08 Marks)

Design 7-segments decoder using PLA.

(06 Marks)

- Explain Schimmit trigger.
 - Give state transition diagram of SR, D, JK and T FlipFlops.

(06 Marks) (08 Marks)

Show how a D Flip-Flop can be converted into JK – Flop Flop.

(06 Marks)

PART – B

a. Design 3-bit PISO (Use D – FlipFlop). 5

Design two 4-bit serial adder.

(06 Marks) (06 Marks)

Design 4-bit Johnson counter with state table. c.

(08 Marks)

6 Design Synchronous mod 6 up-counter using JK – Flip Flop.

Explain digital clock with block diagram.

(10 Marks) (10 Marks)

- 7 a. Reduce state transition diagram (Moore model) Fig. Q7 (a) given below by,
 - i) Row elimination method and
 - ii) Implication table method, with partition table.

(12 Marks)

Fig. Q7 (a)

b. Design an asynchronous sequential logic circuit for state transition diagram shown below Fig. Q7 (b). (08 Marks)

8 a. Explain with logic diagram 3-bit simultaneous A/D converters.

(10 Marks)

b. Explain with neat diagram, single – slope A/D converter.

(10 Marks)

* * * * *